Unit 4 Test Review: Electrons and EMR

1. Complete the following table.

Lewis Dot	Orbital Notation	
·'n		1 A A
·P·	IS 23 2P 33 3P	Noble Gas Configuration
	1 22 22 42 22 3	2
	1s22s2p=3s=3p=	$[Ne]3s^23p^5$
Lewis Dot	Orbital Notation	CLAN ALALAL T A
·Ge·	15 2s 2p 3s 3p 4s	3d 9p
•	Electron Configuration	Noble Gas Configuration
	1522522963523964523064P2	$[Ar] 4s^2 3d'' 4p^2$
Lewis Dot	Orbital Notation	
••	IT IT IT IT	
: F:	<u>15 25 2P</u>	
		Noble Gas Configuration
	1s ² 2s ² 2p ³	[He]2s ² 2p ⁵
Lewis Dot	Orbital Notation	
	TU TU TU TU TU TU TU TU TU	
K.	Is 2s 2p 3s 3p 4s	
17.	Electron Configuration	Noble Gas Configuration
	1522522p63523p6451	[AY]45'
NO Lewis	Orbital Notation	
Dot	TO TO TO TO TO TO TO TO TO	
	1s 2s 2p 3s 3p 4s	3d
V	Electron Configuration	Noble Gas Configuration
	1522522p63523p64523d3	[Ar] 4523d3

Nampatin stationicali
 nices and partial
 nices and partial
 nices and partial
 nices and partial
 nices and partial

2. What is the difference between an atom in the ground state and the excited state?

everything is normal electrons jumped to higher (looks wrong) level 3. Identify the element and if it in excited or ground state. Then highlight the valence electrons. Ground state or Element **Electron configuration** excited state? 1s²2s²2p⁶3s²3p¹ G [Ar]4s²3d⁸4p⁴ d should E p should E 1s²2s²2p⁴3s¹ have 6 6 [Xe]6s1 Ni E 1s²2s²2p⁶3s²3p⁵4s²3d⁹ Na G 1s²2s²2p⁶3s¹ 4. How many total electrons are needed to fill: b) the second energy level? 发 c) the third energy level? 2 a) the first energy level? level 3 35, 3p, 3d level 2 level 1 only S 25,2P

5. You have two waves:

Wave B:

Wave A:

a) Which wave has a longer wavelength? _____

b) Which wave has a higher frequency?

c) Which wave has a lower energy?

6. What is the speed of all forms of electromagnetic radiation (in a vacuum)? (Hint: this is a constant!)

C = 3×108 m/s speed of light

7. UV radiation(UV), Visible light(VL), Gamma rays(GR), Microwaves(MW), Radio waves(RW), Infrared radiation(IR), X rays(XR)

Rank the types electromagnetic radiation (EMR) shown above in order from:

a) highest to lowest energy HIGH: <u>GR, XR, UV, VL, IR, MW, PW</u> :LOV	W
b) highest to lowest frequency HIGH: <u>CR</u> , <u>XR</u> , <u>UV</u> , <u>VL</u> , <u>IR</u> , <u>mW</u> , <u>RW</u> :LOV	W
c) longest to shortest wavelength HIGH: <u>RW</u> , <u>MW</u> , <u>IR</u> , <u>VL</u> , <u>UV</u> , <u>XR</u> , <u>GR</u> :LOV	W

- 8. Circle the correct answer for each question below:
- Ultraviolet Visible i. Which has higher energy? Circle one: or Microwave ii. Which has lower frequency? Circle one: X-Ray or iii. Which has the shorter wavelength? Circle one: Radio Gamma or iv. Which has the lower energy? Circle one: Orange light Indigo light 20 Y B 6 9. a) What equation shows how the wavelength and frequency of electromagnetic radiation are related? Frequency and wavelength are $\underline{indirect}$ proportional. This means when f goes up, λ goes \underline{v} (shown be a state of the state of i. (cnorter) b) What equation shows how the energy and frequency of electromagnetic radiation are related? Energy and frequency are $\underline{\text{Circt}}$ proportional. This means when E goes down, f goes $\underline{4}$. i. c) What equation shows how the energy and wavelength of electromagnetic radiation are related? i. Wavelength and energy are $\underline{indirect}$ proportional. This means when λ goes down, E goes $\underline{1}$ Use the GUESS method to solve the math problems below, using the GUESS boxes. **10.** A certain photon of light has a wavelength of 4.22×10^{-7} m. What is the frequency of this light? **11.** A photon has a wavelength of 0.960 m. What is the energy of this photon?
- **12.** A certain red light has a frequency of 4.41 x 10¹⁴ Hz. What is the energy of this light?
- **13.** A photon of light has 4.93 x 10⁻¹⁹ J of energy. What is the frequency of this photon?

10
G:
$$\lambda = 4.22 \times 10^{-7} \text{ m}$$

G: $\lambda = 0.960 \text{ m}$
U: f
E: $C = \lambda \cdot f$
G: $L = \frac{hC}{\lambda}$
S: $3 \times 10^{5} \text{ m/s} = 4.22 \times 10^{-7}$ (f)
S: $f = 7.11 \times 10^{14} \text{ Hz}$
G: $f = 4.41 \times 10^{14} \text{ Hz}$
U: E
E: $E = h \cdot f$
S: $E = 2.07 \times 10^{-25} \text{ J}$
U: f
E: $E = h \cdot f$
S: $E = h \cdot f$
S: $E = 2.07 \times 10^{-19} \text{ J}$
U: f
E: $E = h \cdot f$
S: $E = 2.92 \times 10^{-14} \text{ J}$
U: $f = 7.44 \times 10^{14} \text{ Hz}$