Unit 4 Test Review: Electrons and EMR

1. Complete the following table.

2. What is the difference between an atom in the ground state and the excited state?
everything is
normal
\downarrow
elections jumped to higher level (looks wrong)
3. Identify the element and if it in excited or ground state. Then highlight the valence electrons.

4. How many total electrons are needed to fill:
a) the first energy level?

2
b) the second energy level? \qquad 8
 18
level 1
only s
Only
5. You have two waves:

Wave A:

a) Which wave has a longer wavelength?

$$
2 s, 2 p
$$

level 3

$$
3 s, 3 p, 3 d
$$

level 2

Wave B: $\Omega \int$
c) Which wave has a lower energy?
6. What is the speed of all forms of electromagnetic radiation (in a vacuum)? (Hint: this is a constant!)

$$
C=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \text { speed of light }
$$

7. UV radiation(UV), Visible light(VL), Gamma rays(GR), Microwaves(MW), Radio waves(RW),Infrared radiation(IR), X rays (XR)

Rank the types electromagnetic radiation (EMR) shown above in order from:
a) highest to lowest energy
mich GR $\times R$ UV UL, IR, $M W$, RW :ow
b) highest to lowest frequency

HIGH: GR $\xlongequal{\text { b) highestolowest frequency }} \xlongequal[U]{ }, V L, I R, m W, R W$:Low
c) longest to shortest wavelength

Hoo: RN $m \omega$ IR VL UV, XR GR :ow
8. Circle the correct answer for each question below:
i. Which has higher energy? Circle one:

ROY BIN
9. a) What equation shows how the wavelength and frequency of electromagnetic radiation are related?
i. Frequency and wavelength are $\frac{\text { indirect }}{\text { (opposite) }}$ proportional. This means when f goes up, λ goes $\frac{\downarrow}{\text { (short ter) }}$
b) What equation shows how the energy and frequency of electromagnetic radiation are related?
i. Energy and frequency are $\frac{\text { direct }}{\text { (same) }}$ proportional. This means when E goes down, f goes $\frac{\downarrow}{\downarrow}$.
c) What equation shows how the energy and wavelength of electromagnetic radiation are related?
i. Wavelength and energy are $\frac{\text { indirect }}{\text { (Opposite) }}$ proportional. This means when λ goes down, E goes $\uparrow \downarrow$

Use the GUESS method to solve the math problems below, using the GUESS boxes.

10. A certain photon of light has a wavelength of $4.22 \times 10^{-7} \mathrm{~m}$. What is the frequency of this light?
11. A photon has a wavelength of 0.960 m . What is the energy of this photon?
12. A certain red light has a frequency of $4.41 \times 10^{14} \mathrm{~Hz}$. What is the energy of this light?
13. A photon of light has $4.93 \times 10^{-19} \mathrm{~J}$ of energy. What is the frequency of this photon?
\# 10
G: $\lambda=4.22 \times 10^{-7} \mathrm{~m}$

U: f

E: $\quad C=\lambda \cdot f$
S: $3 \times 10^{8} \mathrm{~m} / \mathrm{s}=4.22 \times 10^{-7}(f)$
$s: f=7.11 \times 10^{14} \mathrm{~Hz}$
\#12
G: $f=4.4\left(\times 10^{14} \mathrm{~Hz}\right.$

U: E
E: $E=h \cdot f$

S:

$$
\left.\left.E=\frac{}{6.63 \times 10^{-34}(4.41 \times 10}\right]^{4}\right)
$$

S: $E=2.92 \times 10^{-19} \mathrm{~J}$
\# 11
G: $\quad \lambda=0.960 \mathrm{~m}$

U: E

E: $E=\frac{h c}{\lambda}$
$S: E=\frac{6.63 \times 10^{-34}\left(3 \times 10^{8}\right)}{0.960}$
S: $E=2.07 \times 10^{-25} \mathrm{~J}$
Units:
$G: E=4.93 \times 10^{-19} \mathrm{~J}$
$\mathrm{U}: f$
E: $E=h \cdot f$
S: $4.93 \times 10^{-19}=6.63 \times 10^{-34}(\mathrm{f})$
s: $f=7.44 \times 10^{14} \mathrm{~Hz}$

